Oxidative stress and the mitochondrial theory of aging in human skeletal muscle.

نویسندگان

  • Parise Gianni
  • Kaczor J Jan
  • Mahoney J Douglas
  • Phillips M Stuart
  • Mark A Tarnopolsky
چکیده

According to the mitochondrial theory of aging, an age-related increase in oxidative stress is responsible for cellular damage and ultimately cell death. Despite compelling evidence that supports the mitochondrial theory of aging in some tissues, data regarding aging skeletal muscle are inconsistent. We collected resting muscle biopsies from the vastus lateralis, and 24 h urine samples from, young (N = 12, approximately 22 yr), and older (N = 12 approximately 72 yr) men. Urinary 8-OHdG was significantly higher in older as compared to younger men (Old: 7714 +/- 1402, Young: 5333 +/- 1191 ng g(-1) creatinine: p = 0.005), as were levels of protein carbonyls (Old: 0.72 +/- 0.42, Young: 0.26 +/- 0.14 nmol mg(-1) protein: p = 0.007). MnSOD activity (Old: 7.1 +/- 0.8, Young: 5.2 +/- 1.8 U mg(-1) protein: p = 0.04) and catalase activity (Old: 8.5 +/- 2.0, Young: 6.2 +/- 2.4 micro mol min(-1) mg(-1) protein: p = 0.03) were significantly higher in old as compared to young men, respectively, with no differences observed for total or CuZnSOD. Full-length mtDNA appeared lower in old as compared to young men, and mtDNA deletions were present in 6/8 old and 0/6 young men (p = 0.003). The maximal activities of citrate synthase, and complex II+III, and IV were not different between young and old men, however, complex I+III activity was marginally higher in older as compared to younger men (Old: 2.5 +/- 0.5, Young: 1.9 +/- 0.5 micromol min(-1) g(-1) w.w: p = 0.03) respectively. In conclusion, healthy aging is associated with oxidative damage to proteins and DNA, a compensatory up-regulation of antioxidant enzymes, and aberrations of mtDNA, with no reduction in electron transport chain maximal enzyme activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Carbonylation and Heat Shock Proteins in Human Skeletal Muscle: Relationships to Age and Sarcopenia

Aging is associated with a gradual loss of muscle mass termed sarcopenia, which has significant impact on quality-of-life. Because oxidative stress is proposed to negatively impact upon musculoskeletal aging, we investigated links between human aging and markers of oxidative stress, and relationships to muscle mass and strength in young and old nonsarcopenic and sarcopenic adults. Sixteen young...

متن کامل

Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adul...

متن کامل

Targeting redox biology to reverse mitochondrial dysfunction

is general agreement that mitochondria play an important role in the aging process, but the role of mitochondrial oxidative stress remains controversial. Most previous work looking at mitochondrial oxidative stress has focused on damage to DNA, proteins, and lipids with age or in response to manipulation of cellular antioxidants. The interaction between oxidative damage and aging has been calle...

متن کامل

Mitochondrial oxidative stress in aging and healthspan

The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover,...

متن کامل

Mitochondrial Involvement and Impact in Aging Skeletal Muscle

Atrophy is a defining feature of aging skeletal muscle that contributes to progressive weakness and an increased risk of mobility impairment, falls, and physical frailty in very advanced age. Amongst the most frequently implicated mechanisms of aging muscle atrophy is mitochondrial dysfunction. Recent studies employing methods that are well-suited to interrogating intrinsic mitochondrial functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental gerontology

دوره 39 9  شماره 

صفحات  -

تاریخ انتشار 2004